Skip navigation

Article by Straub, Detma; Boudreau, Marie-Claude; Gefen, David (2004) in Communications of the Association for Information Systems, 13.


Prior to reading this article, I’ve read two papers written by the same authors, i.e. Straub (1989)[i] and Boudreau, Gefen & Straub (2001)[ii]. I think, this paper is the conclusion of those two earlier papers. The main contribution of this paper is the guideline on what aspect of validation should be included in IS positivist research. The authors rate the requirement (of performing the validation procedures) in three different level of importance, i.e. mandatory, highly recommended, and optional.



All IS positivist researches are required (compulsory) to evident the following aspect of validity:

  1. Construct Validitywhether the measures chosen by the researcher “fit” together in such as way so as to capture the essence of the construct. [Note: you may refer to my previous entry related to construct validity here, or refer to wikipedia (here) for the complete definition]. Note that construct validity consists of four different but inter-related elements, i.e. (i) Discriminant Validity; (ii) Convergent Validity; (iii) Nomological Validity; (iv) Factorial Validity[iii] and; (v) Testing of Common Method Bias[iv]. What are mandatory, according to the authors, are Discriminant Validity and Convergent Validity. Therefore, Factorial Validity is this context is sufficient.
  2. ReliabilityTo prove that measures for one construct are, indeed, related to each other. It is worth to note that reliability works only for reflective construct (never perform reliability on formative construct as its measures are not correlated with each other). [Note: Please refer to my earlier entry on article by Petter, Straub and Rai (2007) for further details].
  3. Manipulation Validity – it is mandatory for certain types of (lab) experimental study only. Experiment that requires participant to be treated with physical substance (such as drug) is not required to prove the manipulation validity.
  4. Statistical Conclusion Validity Researchers need to provide sound arguments on the quality of the statistical evidence of covariation, such as sources of error, the use of appropriate statistical tools, and bias.


Highly Recommended

It is highly recommended that positivist research perform the following aspects of validation:

  1. Testing for Common Method BiasCommon Methods Bias can be avoided by gathering data for the independent variables and dependent variables from different methods, or, if a single method is used, to test it through SEM.
  2. Nomological Validity – The evidence that the structural relationships among variables/constructs is consistent with other studies that have been measured with validated instruments and tested against a variety of persons, settings, times, and, methods.
  3. Manipulation Validity – for quasi-experimental or non-experimental study in social (and design) science where characterizes a great deal of management research, researchers have to prove that participants were truly received the treatment.



It is optional that positivist research perform the following aspects of validation:

  1. Predictive Validity – “Also known as “practical,” “criterion-related,” “postdiction,” or “concurrent validity,” predictive validity establishes the relationship between measures and constructs by demonstrating that a given set of measures posited for a particular construct correlate with or predict a given outcome variable.”
  2. Unidimensional Validity Evidence that shows each measurement item reflects one and only one latent variable (construct). The terms frequently used to discuss this validity are: “first order factors,” “second order factors,” etc. According to the authors, this type of validity is relatively new and the understanding on its capabilities is currently (still) very much limited.


The authors also made the following recommendations pertaining to the innovation of research instruments: 

  1. Researchers are highly recommended to use previously validated instruments wherever possible. If researchers make significant alterations in validated instruments, they are required to revalidate the instrument’s content, constructs, and reliability.
  2. For those who are able to create their own instrument, they’re highly recommended to do so provided that they are required to validate it thoroughly.


[i] Straub, D. W. (1989) “Validating Instruments in MIS Research,” MIS Quarterly, 13:2, pp. 147- 169.

[ii] Boudreau, M., D. Gefen, and D. Straub (2001) “Validation in IS Research: A State-of-the-Art Assessment,” MIS Quarterly, 25:1, pp. 1-23.

[iii] Factorial validity can be assessed using factor analytic techniques such as common factor analysis, PCA, as well as confirmatory factor analysis in SEM. It can assess both convergent and discriminant validity, but does not provide evidence to rule out common methods bias when the researcher uses only one method in collecting the data.

[iv] Common Method Bias is also known as “method halo” or “methods effects”. It may occur when data are collected via only one method or via the same method but only at one point in time. Data collected in these ways likely share part of the variance that the items have in common with each other due to the data collection method rather than to: (i) the hypothesized relationships between the measurement items and their respective latent variables, or; (ii) the hypothesized relationships among the latent variables.



One Trackback/Pingback

  1. […] [iii] Social science and behavioral research describe a significant proportion of all IS research (Straub, Boudreau & Gefen (2004, p.383)). […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: